首页> 外文OA文献 >A monomial chaos approach for efficient uncertainty quantification on nonlinear problems
【2h】

A monomial chaos approach for efficient uncertainty quantification on nonlinear problems

机译:用于非线性问题有效不确定性量化的单项混沌方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equations which can be coupled. The proposed monomial chaos approach employs a polynomial chaos expansion with monomials as basis functions. The expansion coefficients are solved for using differentiation of the governing equations, instead of a Galerkin projection. This results in a decoupled set of linear equations even for problems involving polynomial nonlinearities. This reduces the computational work per additional polynomial chaos order to the equivalence of a single Newton iteration. Error estimates are derived, and monomial chaos is applied to uncertainty quantification of the Burgers equation and a two-dimensional boundary layer flow problem. The results are compared with results of the Monte Carlo method, the perturbation method, the Galerkin polynomial chaos method, and a nonintrusive polynomial chaos method.
机译:提出了一种单项混沌方法,用于非线性计算问题中的有效不确定性量化。对于现有的不确定性量化方法,通过非线性方程式传播不确定性可能需要大量计算。通常会产生一组可以耦合的非线性方程。所提出的单项式混沌方法采用多项式混沌展开式,其中多项式以单项式为基础。使用控制方程的微分而不是Galerkin投影来求解膨胀系数。即使对于涉及多项式非线性的问题,这也会导致一组线性方程解耦。这将每个额外的多项式混沌次序的计算量减少到单个牛顿迭代的等效量。得出误差估计,并将单项式混沌应用于Burgers方程和二维边界层流动问题的不确定性量化。将结果与蒙特卡洛方法,摄动方法,Galerkin多项式混沌方法和非介入式多项式混沌方法的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号